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Interest in wavelength multiplexing in holography derives naturally from the need for realistic color rendition
as well as from resolution requirements. Imaging in coherent illumination is compromised by speckle.
Speckle is prejudicial to quality, sharpness, contrast—in a word, to the fidelity of reproduction or holographic
reconstruction. In incoherent light these patterns are canceled by spatial phase averaging. Incoherent light
can indeed be regarded as a superposition of a very large number of coherent components whose phase factors
are distributed at random. It is demonstrated that the averaging effect, ultimately caused by the law of large
numbers, is achieved by the superposition of only three components, thus allowing simultaneously a true color
rendition and an improvement in spatial resolution. The spatial statistical behavior of the amplitude of the
sum of three intrinsically coherent waves, when they are incoherently superposed in an imaging system, is
investigated. A random variable representing the amplitude of this sum is introduced. Then the cumulative
probability function and the probability density function of the resulting amplitude are calculated. The white-
light (infinite-wave illumination) case and the purely coherent (one-wave) case are analyzed. The results are
interpreted with a heuristic vector model. © 1997 Optical Society of America [S0740-3232(97)00502-4]
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1. INTRODUCTION

The information-carrying capacity of an optical system is
subject to a diffraction limit of (Etendu)/A%2. The Etendu
takes into account not only the size of the source but also
the angular aperture of the observing system. The
amount of information that can usefully be fed into the
source, therefore, depends on the mode of observation.!?

Nevertheless, it is highly desirable not to feed into the
input anything approaching the theoretical maximum of
the information capacity. This means that the system
has redundancy; that is, it is carrying the input informa-
tion several or many times over in parallel channels.
This in turn makes it resistant to noise, i.e., increases the
fidelity of transmission. It is well known that coherent
systems, which are frequently nonredundant, are easily
upset by the presence of dust or small disturbing par-
ticles. There is only one way to ameliorate the image-
forming fidelity: to increase the number of parallel chan-
nels (number of degrees of freedom), i.e., to increase the
sampling capacity of the image-forming system.

Paraphrasing the famous parable of Eddington,>* An
ichthyologist should not be surprised, if exploring the
ocean by a fishing net with a mesh size of 2 inches, to find
that in the ocean there are no creatures smaller than 2
inches, nor should he be surprised, if using several nets
simultaneously, to find things smaller than the smallest
openings of all the nets used.

Any calculation concerning the resolution limit of an
image is at best a guide to expected performance. Rather
than attempting the task of defining resolution® in any
image-forming system, we shall adopt the principle that
the reciprocal of the image spot size resulting from a point
source is the resolution limit in lines per millimeter.

In holographic precision imaging, i.e., microscopy®™®
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and endoscopy,'® the spatial resolution is determined by
speckle. Speckle is the elementary information cell of
the image-forming system!''™'3; therefore it determines
the system’s information handling (sampling) capacity:
It plays the role of the mesh sizes in Eddington’s fishing
nets. Finally, the information-handling capacity of an
optical system is determined by the total number of the
quanta of optical information (the total number of speck-
les). To increase the image fidelity, one should not try to
eliminate the speckles. It is an impossible task, in any
case, as the speckle-free beam is also information free,
i.e., image free, and therefore useless. To increase the fi-
delity, image resolution, and contrast, one should in-
crease the number of parallel channels and thus increase
the density of speckle beyond the resolution of the detec-
tion system (the human eye, perhaps) to achieve speckle
averaging.

For us to be able to investigate the nuclei of individual
human tissue cells, details as small as 1 um in size have
to be resolved. The best resolution achieved until now in
holographic endoscopy was of the order of 2.5 um.!*

Spatial averaging of speckle patterns in imaging with
coherent light'® can improve resolution as well as white-
light reconstruction of image-plane microholograms.'1%
One possibility for reducing the speckle noise in an
image-plane hologram, regarded simply as a spatial car-
rier image, is to extend the recording source size,!” i.e., to
reduce the spatial coherence. Another possibility for in-
creasing the resolution by speckle averaging is to record
holograms with several wavelengths (thus in effect in-
creasing the number of Eddington’s fishing nets). The
resolution of microscopic observation of a coherently illu-
minated object is indeed ameliorated by wavelength
multiplexing.'®2! The mere addition of the speckle pat-
terns caused by different laser wavelengths???? makes
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their averaging possible. This means that it would be
possible to obtain both a higher resolution and a natural
color reproduction?® if the hologram were recorded with,
for example, three laser lines of adequate wavelength
(color recording).

Interest in wavelength multiplexing comes naturally
from the need for realistic color rendition and directly
from resolution requirements, as well. Wavelength mul-
tiplexing in color holography has already been studied
from colorimetric, intensity, and diffraction-efficiency
viewpoints. Colorimetric analysis has shown that a spec-
tral sampling effect resulting from the use of a discrete
number of laser lines that are spectrally narrow owing
to coherence requirements has to be taken into account
for matching true colors of an object. Peercy and
Hesselink?>?® discussed wavelength selection by investi-
gating the sampling nature of the holographic process.
During the recording of a color hologram, the chosen
wavelengths point sample the surface-reflectance func-
tions of the object. This sampling of color perception can
be investigated by the tristimulus values of points in the
reconstructed hologram, which is mathematically equiva-
lent to integral approximations for the tristimulus inte-
grals. According to Peercy and Hesselink, the sampling
approach indicates that three monochromatic sources are
almost always insufficient to preserve all of the object’s
spectral information accurately. Four, five, or more laser
wavelengths may be required. Only further experiments
for each specific case can determine the necessary number
and the optimal combination of wavelengths. The other
decisive factor that influences the choice of the recording
wavelengths is their availability.

Intensity studies confirm that speckle averaging arises
from wavelength variety, thus enhancing resolution.
Diffraction-efficiency analysis?’~%? confirm that the prob-
lems of reciprocity law failures are managed best by si-
multaneous rather than sequential recording of all wave-
lengths. In any case, sequential exposure is impossible
in pulsed recordings.

Here we shall show that the behavior of luminous radi-
ance composed of three light waves of different wave-
length is statistically closer to that of an incoherent than
to that of a coherent light beam. We shall focus our at-
tention on three geometrically identical waves, existing
simultaneously but with mutually random phases. We
shall study the behavior of the sum of these three compo-
nents to see whether this sum takes certain particular
values more frequently.

2. MODEL

The fact of interest is that the averaging of speckle noise
is achieved by the superposition of only three waves. To
explain it, a simplified one-dimensional analysis of the in-
coherent superposition of a finite number of coherent
waves is presented. If the number of waves is very large
(infinite), their superposition is tending toward its nonco-
herent limit.

Intrinsically (in themselves) coherent waves are desig-
nated here by index ( j), that is, (¢;), for example. The
wave ¢(x) can be written in complex notation as
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¢(x) = a(x)explif(x)], 1)

or in a compact form,
¢ = a exp(if), (2)
¢ = a; exp(i6;). (3)

Mutual noncoherence between intrinsically coherent
waves ¢, ¢, b3,... ¢;, etc, is treated by assuming
that the corresponding 6, 6,, 65, . . . 6; are stochastically
independent.

If certain illumination is composed of N mutually non-
coherent waves ¢;(j = 1,2,3, ... N), then the image
wave ¢(x) of a single object point x is given as a superpo-
sition:

N N
Bex) = 2, ¢i(x) = 2 a; exp(if)). 4)
Jj= Jj=
The illumination intensity of the image point is then
N 2
Ix) = [ = | X (@) (5)
7=
and, according to Eq. (3),
N 2
I(x) = | >, a; exp(i6))| . (6)
j=1
A mere expansion of this gives
N N N
I(x) = 2 |aj|2 + 2R|2 2 ajar* expli(6; — 6,)],
=1 j=1 k=1
j<k
(7)

*

where a; and a;, are complex and a,* stands for the com-

J
plex conjugate of a, .

In a shorter form,

N
I(x) = X, |aj® + R, (8)
j=1
R being
N N
R =2R| >, > aja;* expli(6; — 0,)]}, 9)
j=1 k=1
j<k

where R stands for the real part of the complex expres-
sion within the braces.

In noncoherent illumination imaging, R is neglected, as
the summation is taken over a very large number
(N — =) of incoherent waves. In the particular case of
interest, N is always small (N = 3, 4, or 5, for example),
and consequently this term also has to be taken into ac-
count.

Instantaneous phases 6;, 6, (j,j' =1,2,3,...N)
of the coherent light waves are characterized by a strong
mutual correlation approaching 1 in the ideal coherent
case. In that case they are simply proportional (),
= K¢, to each other.

In contrast, in the noncoherent case, the instantaneous
phases 6;, 6,,(j # j') would have uncorrelated random
values.
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3. THREE-WAVE MULTIPLEXING

In color holography, wavelength multiplexing takes place
at the reconstruction. Usually three spectrally narrow
(although broadened with respect to the laser lines used
for recordings) light waves are emerging from each recon-
structed image point.

Therefore N = 3, and the total wave amplitude ¢(x)
reads as

3
b(x) = 21 ¢; = ay exp(if;) + ay exp(ify)

+ a5 exp(ifs). (10)

Of course, only the real part of this complex amplitude
has a physical meaning and, therefore it has to be ana-
lyzed further. If it is denoted by S,

S = R{p(y)} = a; cos 0, + ay cos Oy + ag cos O3.
1n
As 6y, 65, and 63 are random variables, so is the sum S.
For a noncoherent superposition the phases 0, are sta-
tistically independent, and they can embrace any value
(0 < #; < 27) at random and with no preferences. In
other words, it is very likely that the probability P(a
< ¢; < b) of encountering (finding) certain 6; depends
only on (b — a). Owing to the normalization require-
ment,

b—-a

Pla<0<b)= —5—,

0<a<b<2m (12)

Each of amplitudes a; , ay , and a3 is determined as a
product of three factors: (1) the spectral reflectance func-
tion of the object that is holographed, (2) the relative in-
tensities of three chromatic laser light components used
for recording the hologram, and (3) the relative intensities
of the same spectral components of the white-light recon-
structing beam.

4. CUMULATIVE PROBABILITY FUNCTION
OF THE SUM OF THREE WAVES

Since the random variables 6;, 6,, and 65 are stochasti-
cally independent, the cumulative probability function
F,(x) of the random variable S,

Fg(x) = P(S <x)

= P(a; cos 0; + ag cos Oy + ag cos 05 < x), (13)
can be expressed in the form of the integral

P(aq cos 6; + ay cos 0y + ag cos 03 < x)

-1

aqcosfy+agcosby+agcosty<x

d6,d0,d6,. (14)

The integration domain of this integral, Fig. 1, is a vol-
ume in three-dimensional space with orthogonal refer-
ence frame (6;, 65, 63).
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The volume of integration is bounded by a surface ex-
pressed by the equation

aq cos 0, + ay cos Oy + ag cos O3 = x. (15)
If we change variables adequately,

and hence -1 <su; <1, (16)

u; = cos 6; i

J J

the integration domain is then transformed into the
simple form of a truncated cube (Fig. 2) centered at the
origin and with one corner cut off by the plane:

auy + agg + agug = x. (17)

Rewritten, the cumulative probability function is now

F(x) = P(ajuq + asuy + agug < x); (18)
that is,
dul du2 du3
ro- [ ] T
\/l—ul \/1_UQ \/1_U3
aquqtagugtagug<x
since df, = ——. (19)
1 - uJ-Z
4
34
2.
1]
H
g O
-14
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_3.]
4.
-4
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éﬁﬂqj 4 4 491(rad)

Fig. 1. Three-dimensional integration domain.

Fig. 2. Integration volume after a change of coordinates.
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5. CALCULATIONS AND RESULTS

Integral (19) can be calculated by three successive one-
dimensional integrations, but only the first one can be
performed analytically by its primitive arcsine function.
After this first integration is done, the cumulative prob-
ability function comes out in the form of an elliptical sur-
face integral:

Flx) = ff arcsin(h) + w/2 dad 20)
x) = uidu,y,
\/1 — u12\/1 — u22 e

where h is the distance of the cutting plane P, (varying
with the sum x) from the plane u3 = —1.
X — aqUuq — QqlUg

h = . (21)
as

The remaining surface integral (20) can be calculated
only by numerical procedures. If we apply the Gauss
quadrature method,® for example, we obtain the cumula-
tive probability density function F(x) for each value (x),
ranging from x;, = (—a; — a9 — a3) t0 X = (@1 + ay
+ asg). During this integration the cutting plane is suc-
cessively truncating the cube of integration starting at its
lower corner (—1, —1, —1) and ending up at its upper cor-
ner located at (1, 1, 1). This can be imagined as a plane
moving parallel to itself through the cube from the start-
ing point x ;, to the final position x .
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Fig. 4. Probability functions for {a; = 1.5, ay = 2.0,

as = 2.5},
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Fig. 5. Probability functions for {a; = 3.0, ay = 1.0,
az = 1.0}.

After the cumulative probability function is obtained,
the corresponding probability density function is calcu-
lated by deriving the cumulative probability function. In
practice this derivation is done by a stepwise finite-
difference approximation. Obviously, probability func-
tions are strongly dependent on the choice and combina-
tion of the initial parameters (e, ay, az). Three plots
of the probability functions for three different sets of am-
plitudes (a;, ay, a3) are presented in Figs. 3, 4, and 5.

Finally, the range of the most probable values of the
wave amplitude (11) of the non-coherent superposition of
three waves emanating from each holographically recon-
structed object point, could be estimated.

6. ANALYSIS AND INTERPRETATIONS

1. Let us assume that at first the three amplitudes
(ay, ay, ag) are mutually not very different from each
other, for example, as in a scene with a large-band spec-
tral reflectance function. In that case the most probable
value for the resulting amplitude (x = a; cos 6;
+ aycos O, + ascos 6;) [Eq. (15)] of the noncoherent
superposition of three (chromatically) different waves is
zero (x = 0) (see Figs. 3 and 4). This represents the best
possible three-wave averaging of the spatial phase varia-
tions (speckle). To reduce the speckle variations even
more, (IN) should be chosen larger than three:
(N > 3). The interesting question is, What is the mini-
mum number of statistically independent (noncoherent,
different color) waves that should be used for obtaining a
given level of speckle noise reduction and consequently
the spatial resolution improvement that approaches the
desirable white-light limit?

2. In the case in which the condition (¢; =~ ay ~ ag) of
equal amplitudes is not satisfied, for example, (a;
> ay + agz) (Fig. 5) the zero value is no longer the most
probable one. In other words, the averaging over the
random spatial phases is no longer so good.

3. To elucidate the two previous points, we can imag-
ine the complex amplitude (a;) of each wave as a vector in
a complex space. Different vectors corresponding to dif-
ferent noncoherent waves are pointing toward random
directions (to account for random phases), each having
different (but comparable) constant lengths (correspond-
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ing to wave amplitudes a;). Obviously, the sum of sev-
eral (three) vectors with random phases [each turning
with constant angular speed (27v;) in a mutually inde-
pendent, noncorrelated way] will become closer to zero as
the vectors’ lengths converge. The probability of a maxi-
mum constructive interference is not excluded completely
but is very small.

7. CONCLUSIONS

Imaging in coherent illumination is compromised by the
formation of diffraction patterns in a variety of forms and
intensity distributions from Airy disks to general
speckles.®!  Such patterns are prejudicial to the quality,
sharpness, and contrast, that is, to the fidelity of the re-
production or holographic reconstruction. In incoherent
light these patterns are canceled by spatial phase averag-
ing. Incoherent light can indeed be regarded as a super-
position of a very large number of coherent components
whose phase factors are distributed at random. This av-
eraging effect, ultimately caused by the law of large num-
bers, can be represented mathematically by the mean
value of the complex sum

1 N
S = IV,; exp(ia;), (22)

where the a;’s are independent and uniformly distributed
random variables. In this case the probability density of
|S| is approximately Gaussian®? and zero centered, with a
standard deviation of order 1/\N. In other words, S will
seldom deviate from zero for more than a few 1/\/N.
Consequently, when N is very large (N — ), the prob-

ability of |R| being greater than a given 8/\N is very low:

|R| > i) o 10—f(B)’ (23)

VN

where f(B) is an integer-valued function depending on the
B chosen. In this case Eq. (8) becomes

prob

2 N
= > la;% (24)
j=1

N
> b
Jj=1

A noncoherent superposition of a large number of in-
trinsically coherent waves is intensity based, behaving
like a thermal source having a Gaussian intensity distri-
bution.

Now the question is, as has already been pointed out,
whether such an averaging effect occurs if a rather small
number of coherent light components are superposed. In
color holography seldom more than three different coher-
ent components will be applied, and in the reconstruction
they will overlap incoherently. In Fig. 6 a one-
dimensional simulation of the spatial phase averaging ef-
fect is presented.

The first line represents an irregularly oscillating func-
tion that can be regarded as the intensity modulation in a
typical speckle pattern. This speckle function is first ar-
bitrarily shifted and then rescaled by a factor propor-
tional to the wavelength ratios of the three-chromatic
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components. The mean value of the superpositions of the
original speckle function with the first shifted and re-
scaled speckle function is shown as the second line of the
Fig. 6. The third line represents the mean value of the
original signal superposed on its first two shifted and res-
caled versions, and so on. The law of large numbers en-
sures that the limit (far beyond the eighth line) will be
flat: This would be the perfect state of averaging. Nev-
ertheless, here the only aim is to demonstrate that the
third line can be considered to have significantly less
speckle than the first one.

The amplitudes of the original speckle function at given
abscissas can be considered to be distributed at random if
their mutual distances are larger than a few periods
(wavelengths). This holds for any particular speckle dis-
tribution in one, two, or in three dimensions. If the three
of these structures are superposed, the statistical fre-
quencies of the deviations will be described by the prob-
ability density function [Eq. (11)] of the random variable
S,

1
S = g(cos 6, + cos 0, + cos 03), (25)

where 6;, 6,, 63 are uniformly distributed in the interval
[0, 27].

The resulting probability density functions were pre-
sented in Figs. 3-5. One should observe that most of the
deviations are confined within one half of the maximum,
and this complies with the simulation curves (see Fig. 6).
Fluctuations in the third line are half as large as the fluc-
tuations of the original signal. But one should not forget
that both the statistical model and the simulations are
only heuristic, and they do not represent the real diffrac-
tion patterns in any sense. Moreover, even if they did,
the mean values represented by the lower lines of Fig. 6
could eventually present only the structures (intensity
patterns) recorded within the hologram (refractive-index
modulation). But there is only an indirect and not at all
simple relationship between the fidelity of the interfer-
ence intensity pattern recordings and the fidelity of the
holographic reconstruction. To find this relationship,
one should perform a complete rigorous analysis of the
reconstruction-beam diffraction at the complex three-
dimensional modulation, and this is not an easy task.

The case of three multiplexed waves treated above con-
sequently appears to lie between the following two ex-
treme cases:

A pen A o AN AN A A A AN A S A APAY ooy

Fig. 6. Superposition of N random phase waves.
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-N =1, illumination by a single, coherent beam
(e.g., a laser),
—N — o, illumination by a noncoherent source

(e.g., a white light).

In conclusion, the averaging of the diffraction struc-
tures achieved by the incoherent superposition of only
three chromatic components of the color hologram recon-
struction, is explained through an analysis that was
based on a very simple model. In reality, the phases
(61, 0o, 05, ... 0;) are not random variables but random
functions of coordinates. However, this does not affect
the qualitative results.
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